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ABSTRACT 
Data produced by large scale scientific simulations, experi- 
ments, and observations can easily reach tera-bytes in size. 
The ability to examine data-sets of this magnitude, even in 
moderate detail, is problematic at best. Generally this scien- 
tific data consists of multivariate field quantities with com- 
plex inter-variable correlations and spatial-temporal struc- 
ture. To provide scientists and engineers with the ability to 
explore and analyze such data sets we are using a twofold 
approach. First, we model the data with the objective of cre- 
ating a compressed yet manageable representation. Second, 
with that compressed representation, we provide the user 
with the ability to query the resulting approximation to ob- 
tain approximate yet sufficient answers; a process called ad- 
hoc querying. This paper is concerned with a wavelet mod- 
eling technique that seeks to capture the important phys- 
ical characteristics of the target scientific data. Our ap- 
proach is driven by the compression, which is necessary for 
viable throughput, along with the end user requirements 
from the discovery process. Our work contrasts existing 
research which applies wavelets to range querying, change 
detection, and clustering problems by working directly with 
a decomposition of the data. The difference in this proce- 
dures is due primarily to the nature of the data and the 
requirements of the scientists and engineers. Our approach 
directly uses the wavelet coefficients of the data to compress 
as well as query. We will provide some background on the 
problem, describe how the wavelet decomposition is used to 
facilitate data compression and how queries are posed on the 
resulting compressed model. Results of this process will be 
shown for several problems of interest and we will end with 
some observations and conclusions about this research. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications- 
Scientzfic databases; G.1.Z [Numerical Analysis]: Approx- 
imation- Wavelets and fractals; E.4 [Data]: Coding and 

Information Theory-Data compaction and compression 

General Terms 
Algorithms, Management, Performance 

Keywords 
scientific data processing, data modeling, waveiets, compres- 
sion 

1. INTRODUCTION 
For many years knowledge discovery and data mining tech- 
niques have been applied to data obtained from the fields 
of information science, business, and the social sciences. 
Consumer modeling, financial market trends. internet traf- 
fic modeling, web searching, and census data analysis are a 
few examples of these broad disciplines where one can find 
work in the application of knowledge discovery and data 
mining techniques. The use of machine learning, pattern 
recognition, and statistical modeling on data obtained from 
experiments, observations and simulations is becoming of 
great interest to scientists and engineers. It has been noted 
[14] that the flood of data inherent in large scale scientific 
simulations or vast observational catalogues has led scien- 
tists and engineers to explore better, more efficient, ways of 
understanding the data being produced. Many techniques 
in knowledge discovery and data mining are currently be- 
ing explored by researchers to help address this problem [7]. 
This paper is devoted to one aspect of this important growth 
area of knowledge discovery and data mining. Our problem 
is one of effectively compressing large scale scientific simula- 
tion data (measured in tera-bytes) and allowing a scientist 
to query the compressed data in a fraction of the time a 
similar query operation would take on the original data. In 
order to achieve this throughput objective, we are explor- 
ing data modeling techniques that significantly reduce the 
overall size of the data while effectively maintaining much of 
the important physical characteristics of the data - thereby 
defining an ad-hoc query process. We are exploring many 
techniques from mathematical and statistical modeling to 
effectively capture the important yet relevant behavior of 
the data. The choice of a particular data model vary de- 
pending on the characteristics of the data we wish to model, 
the particular properties of the modeling technique, and the 
types of queries we wish to resolve. 

Multi-resolution techniques are based on the idea that data 
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exhibits effects based on temporal or spatial scale and seeks 
to efficiently model that behavior through simple, and ef- 
ficient filtering operations [9, 191. Wavelets apply two sets 
of filters to produce reduced size scaled and detail versions 
of the original data; the filters are again repeatedly ap- 
plied ‘LdownwardS1l to the scaled versions to produce a final 
smooth scale approximate of the data and a hierarchy of de- 
tail data of increasing size. The whole process is reversible, 
in that equivalent filters can be applied and combined at 
each level ‘‘upwards” to recover the original data. Our re- 
duced set models are derived from the detail coefficients. 
Dropping coefficients, not storing them, has a measurable 
effect on the reconstructed approximate to the origina1 data. 
We are experimenting with procedures that effectively drop 
coefficients, thereby reducing the model size, while main- 
taining structure that is appropriate for ad-hoc querying 
of the result. From the compressed data, we are also al- 
lowing further user defined reconstructions of the original 
data - this constitutes the query aspects of the system for 
wavelets and makes the approach unique. We define a set of 
queries based on abstract qualities or concrete quantities of 
the stored Coefficients. Reconstruction based on a specified 
number of important levels in the stored decomposition or 
reconstruct with defined relative error, with respect to the 
original model, are examples of these types of queries. Our 
goal with this query paradigm is to allow a scientist to effec- 
tively use the speed and characteristics of multi-resolution 
techniques while allowing him or her to explore large scale 
data without becoming an expert in multi-resolution theory. 

1.1 Related Work 
Multi-resolution techniques, specifically wavelets, have been 
used for many years as effective modeling tools for data de- 
rived from signal and image processing applications [ll, 19, 
211. Compression, denoising, and change detection 18, 131 
are several examples of particular problems in signal and im- 
age analysis where multi-resolution techniques have proven 
to be effective. As an example of this trend, the newest im- 
age compression standard, JPEG2000, utilizes wavelet based 
techniques [lo, 201. Multi-resolution based paradigms have 
also been shown to be great promise in knowledge discovery 
and data mining applications for data obtained from astro- 
nomical observation, specifically clustering objects in large 
scale sky surveys [12]. In the recent past, multi-resolution 
algorithms have been introduced for particular clustering 
problems. The WuweCluster [17] approach maps the data 
onto a multi-dimensional grid, defining a feature space, and 
applies a wavelet transform to obtain clusters of spatial 
databases. In an effort to address data-sets of high di- 
mensionality, such as multi-media and image databases, a 
wavelet based clustering algorithm Hyper Wuwe IZS] has also 
been introduced. Additionally, and more related to the 
problem we are addressing, wavelets have been successfully 
applied to traditional data querying applications [l5]. For 
fast responses to range sum queries researchers [2] have de- 
veloped a wavelet based approach for approximate query 
processing. In this work the data is mapped to a rela- 
tional table, which is compressed and used to resolve select, 
project, and join operations. A progressive technique which 
maps the query, along with the data, to the wavelet do- 
main for query resolution has been introduced by Shahabi, 
Chung and Safar [16]. This technique is more like our work 
but does not a-priori compress the data set to an approxi- 

mation. Wavelets have also proved useful for indexing into 
large time series databases [6]. The idea behind this work is 
to treat the n-component time series of a target database as 
objects in n-dimensional feature space and apply a wavelet 
transform to the resulting feature space. Once the trans- 
form is done only a small subset of the coefficients are used 
to represent each time series, reducing the dimensionality 
of the original data significantly. Wavelets have also been 
used as a basis for answering surprise and trend queries in 
time series 1151. In this research a wavelet transform is ap- 
plied to the time series data and using the results of the 
wavelet decomposition are stored in a level-wise tree. The 
trend or surprise queries are posed and answered by recon- 
structing the data by using onIy the levels of the tree that 
are appropriate for the query. Our problem, though dif- 
ferent, can benefit from the same basic tenets fundamental 
to these other contributions - that is the analysis of data 
at  varying scales. In general, scientific data from experi- 
ment, observation, or simulation exhibits this “scale behav- 
ior” Specific to our application, large scale time dependent 
three-dimensional simulations are modeled with locally dis- 
cretized difference equations and tend to produce temporal 
and spatial correlations in the discrete data. 

1.2 Contributions 
Our contributions &om this work are two-fold. First in the 
application of wavelets to model and compress the kinds of 
scientific data we are targeting and second, in the techniques 
for querying that resulting compressed model. The data 
we are interested in is large scale multivariate field quanti- 
ties from simulations, experiments, or observations. Typical 
quantities found in these simulations are fundamental or de- 
rived physical quantities such as temperature, pressure, ve- 
locity, vorticity, or entropy. Although some work has been 
done in multivariate wavelet transforms in the recent past 
the concept is an ongoing research topic in the wavelet com- 
munity and one which we are exploring. In order to address 
this issue we have taken a particular mathematical approach 
to modeling and compressing multivariate data which allows 
us to adequately treat the effects of such data on the re- 
sulting model and, more importantly, effectively compress 
the data. We believe that the simple yet sound solution 
approach is of interest to researchers working with multi- 
variate data. We have also established a manner in which 
we allow queries to occur on the resulting compressed data. 
We are directly querying the compressed wavelet transform 
data rather than the original data itself. This means that 
our queries are posed with reguard to the wavelet trans- 
form of a temperature field is as opposed to the tempera- 
ture field itself, for instance. Focusing on the latter would 
necessitate either mapping equivalent queries to the domain 
of the wavelet transform or reverse the transform in some 
intelligent fashion to obtain approximations to or subsets of 
the field data itself. Querying the wavelet transform data 
itself has a practical problem associated with it, namely 
understanding how to  think in the domain of the wavelet 
transform data rather than the intuitive domain of the field 
data. To address this issue we define specific queries (with 
associated semantics) that will allow a particular coupled 
reconstruction from the wavelet transform data. It should 
be noted that we are exploring other modeling techniques 
which lend themselves to resolving other types of queries, 
such as range based queries, however for this work we will 
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concentrate on following this model/query framework. 

2. ALGORITHM DESCRIPTIONS 
Figure 1 illustrates the simplified diagram of our ad-hoc 
query system (known as AQSIM) [l]. The important points 
for this discussion are that a modeling technique (in this 
case wavelets) will create a simplified model file and a data 
reconstructor will use that model file and a user defined 
query to create an approximate representation for the orig- 
inal model data. The simplified model is written to disk in 
a pre-processing step (shown on the right side of the figure) 
which has few processing time constraints, the ad-hoc query 
phase (shown on the left side of the figure) is under user con- 
trol and does have constraints based on response time. We 
use this fact to compute and store the compressed wavelet 
model in an advantageous form for the ad-hoc query phase. 

User Query Simulation Data 

Partitioner 

Modeler 
Index 
File 

Parser 

Index Searcher 

Model 
Reconstructor File 

Predicate 
Processor 

el Visualizer 

Figure 1: AQSIM system diagram 

This section will address f i s t  how we create the wavelet 
model for our original simulation data in the pre-processing 
phase and second how we reconstruct the approximate sim- 
ulation data in the query phase. 

2.1 Basic Wavelet Theory 
There are many excellent books and papers on the theory 
of wavelets [3, 9, 191, and the general application of multi- 
resolution analysis techniques to various problem domains 
[ll, 18, 221. We shall not reproduce that body of work here 
but would like to give a brief review of multi-resolution anal- 
ysis with traditional orthonormal wavelets to describe how 
and why we are developing the algorithms in our system. 
We begin with a basic development of general wavelet the- 
ory, f is t  in the continuous case then moving to the discrete. 
The idea of a continuous wavelet begins with a scaling func-  
t ion  i$ and a wavelet funct ion + which satisfies the diIation 
equations : 

and 

+(t) = W j 4 ( 2 t  - j ) .  
3 

The filter coefficients { c j }  and { z u j }  determine the smooth- 
ness, orthogonality, vanishing moments and compactness 
properties of the resulting functions. These scaling and 
wavelet functions along with their dilates and translates de- 
fined by : 

&(t) = $(29 - j )  

and 

establishes a sub-space V o  and a sequence of sub-spaces 
( W k ~ ~ = o  which together form a direct sum decomposition 
of L (the space of square integrable functions) in the fol- 
lowing sense : 

co 

h=O 

This direct sum decomposition allows any square integrable 
function to be written exactly as a sum of the projections of 
that function onto V o  and each of the W k .  There are many 
different choices for the filter coefficients found in the liter- 
ature which form these (bi-orthogonal) basis. For our work 
we will be using Daubechies orthonormal wavelets [3]. The 
familiar Haar wavelet is a simple example of an orthonormal 
wavelet which is considered among this family. 

We are concerned with discrete data (traditionally signals) 
and not continuous data in our work so the concepts intro- 
duced earlier have to be extended to work in the case of 
discrete data. Multi-resolution for continuous functions ex- 
tends to the discrete case in a analogous fashion and follows 
from traditional literature in the signal processing commu- 
nity [ll, 191. The idea behind wavelet decompositions of 
signals is that given a signal f of size N a pair of reduced 
size (coarser) discrete signals s and d defined on a dyadic 
coarsingl of the original domain can be computed - analo- 
gous to the previous continuous discussion. The cornputa- 
tion is done by applying a low-pass linear filter G (followed 
with down-sampling by a factor of 2) and a high-pass linear 
filter H (also followed with down-sampling by a factor of 
2) to the original signal f in a process known as analysis. 
The two signals s and d represent coarse low-pass and high- 
pass filters of the original signal. An important property of 
these multi-resolution algorithms is that the original signal 
f can be reconstructed from the reduced size low-pass and 
high-pass filtered signals s and d - in a process known as 
synthesis. In this process, a low-pass filter G" (preceded 
by up-sampling by a factor of 2) and a high-pass filter H' 
(also preceded by up-sampling by a factor of 2) are applied 
to s and d to produce two signals that can be combined 
with simple addition to produce the original signal f. The 
two synthesis filters G' and H" are intrinsically related to 
the original analysis filters G and H and their construction, 
along with their specific attributes, is the result of many 

'A dyadic coarsening refers to the fact that two elements of 
the h e  domain data are combined into one element of the 
coarse domain data. 



early papers in the field [3 ,  91. The computarional complex- 
ity of the above filtering and sampling operations is O ( N )  
since the number of coefficients in both filters a constant 
(< N by design). This decomposition/reconstruction prop- 
erty is known as “perfect reconstruction” and is shown in 
figure 2. 

ef 
Figure 2: Perfect Reconstruction Proper ty  

In terms of finite filters, the perfect reconstruction property 
amounts to  the the following mathematical identity : 

G’G + H’H = I, 

where G, HI G*, and H* are the analysis and synthesis fil- 
ters from above and I is the identity filter. The idea behind 
a multi-resolution analysis of a signal is to use the same 
decomposition operation on the filtered and down-sampled 
scaled signal s at subsequent levels in a recursive fashion. 
It is easy to see that if the perfect reconstruction property 
holds at a single level then the whole process will hold for 
a hierarchy of levels. The output of this process produces 
a small set of J smooth scaling coefficients at a very coarse 
level, say L, 

and the details from all levels, 1 5 1 5 L ,  

where Ji represents the indices of coefficients on level 1. It 
can be shown (and follows intuitively from equation I) that 
the original signal f has a representation in this discrete 
wavelet basis as : 

L J r  

j=l I=1 j=1 

where q5i(t) = q 5 ( Z L t  - j )  is the smooth scaling function at 
the coarsest level and $l(t) = q5(2’t-j) are the detail scaling 
functions at the intermediate levels. Equation 2 represents 
the full wavelet model for our process with respect to a par- 
ticular wavelet filter. For efficiency reasons the reconstruc- 
tion of the original function f is done by the up-sampling 
and filtering operations described earlier. The representa- 
tion in equation 2 is useful for some direct computations 
as well as observing that the size of the wavelet coefficients 
gives an exact computation of the size of the function f : 

which equals from the definition of q5: and +: , 

j=1 I=1 j=1 

2.2 Data Compression 
We use the results of equation 3 as a guide in compressing 
and organizing the wavelet model of the data. In fact, this 
gives an intuitive yet very effective method of compressing 
data (measured with an 1’ norm) - namely keep the co- 
efficients with largest absolute value, weighted by a factor 
involving their Ievel. A more mathematically rigorous devel- 
opment of this idea has been done in the literature 14, 5. 211. 
This insight into the relation to the coefficients and their in- 
dividual contribution to the global error actually gives three 
methods to store compressed model files, two of which be- 
gin with sorting the level weighted coefficients (largest to 
smallest) and another that doesn’t require sorting : 

Choose sorted coefficients until a user specified total 
number of coescients  is achieved, thereby assuring 
that a prescribed model file size is achieved. 

Choose sorted coefficients until a user specified relative 
error is achieved, thereby assuring that a prescribed 
model relative error is achieved. 

Choose unsorted coefficients that are larger than a user 
specified coefficient szze. 

Figure 3: Methods for Compressing a Wavelet 
Transform 

We are researching all three strategies but have so far opted 
to use the fist in order to effectively address model file size. 
It should be noted that the sorting procedure used in the 
fist two methods above has complexity O(Nlg(N)) in the 
number of coefficients N. This is an acceptable cost for con- 
struction of the wavelet model in our pre-processing stage. 
Due to sub-additivity we can rewrite the formula given by 
equation 2 as : 

where the set 3~ represents all the indices at the coarsest 
level and the set 3 represents the ( e ,  3 )  tuples composing the 
indices on all other (non-coarse) levels. Then the three se- 
lection methods amount to selecting a subset, say 3*, of 3 
that satisfies one of the sorting or non-sorting criteria above. 
The 1’ error is easily computable as the weighted size of the 
coefficients left out of the selection set. The above devel- 
opment was in terms of single variable functions and the 
sorting key can naturally be chosen to be the weighted co- 
efficient size. For multivariate functions, with which we are 
concerned, there is a dearth of research on the general sub- 
ject of multivariate or vector multi-resolution analysis. Our 
solution approach is to incorporate the multivariate analysis 
solely into the sorting and selection procedure rather than 
research and develop new multivariate wavelet transforms. 
To do this we fist perform a standard single variable trans- 
form on each variable of the data as described above. Then 
if we label the individual transform coefficients with their 



multivariate component c = 1. . . m as : 

and form a equivalent to the real multivariate transform 
coefficient as : 

for each level E = 1, . . . , L and level index j = 1, . . . , 21. We 
then use a weighted multivariate l 2  norm : 

m 

i=l 

to find a size (or importance) estimate for the coefficienw 
and use that as a sort key. The weights wi  are positive and 
have the property that : 

cui = 1. 
i=l 

The simple weights wi = l f m ,  giving equal weight to each 
component, is the most natural choice and currently the ones 
we use. However it is not illogical or difficult to use some 
statistical measures of the coefficients themselves to derive 
a more appropriate non-linear weighting scheme. Once the 
coefficients are chosen the resulting coefficients along with 
their significance ordering obtained from the sorting are 
saved to disk. This compressed model file represents a start- 
ing point upon which ad-hoc queries are performed. 

2.3 Queries on the Compressed Data 
The reconstruction of an approximate representation of the 
original data in the query resolution phase (the left side 
of figure 1) is performed under more interactive time con- 
straints. As mentioned we store the wavelet coefficients in 
the model file with their sorting order and utilize this infor- 
mation, currently, to provide some additional query process- 
ing for the end user. This information can also be incorpo- 
rated into a progressive reconstruction which is controlled 
by the user and provides a more visual metric to conclude 
when a reconstructed approximate is “good enough”. The 
queries that we provide are  ultimately queries about the 
quality, quantity, o r  possibly spatial location of the stored 
wavelet coefficients themselves. This approach makes the 
data compression a discovery process, where the compres- 
sion hopefully removes unwanted noise or homogenizes re- 
dundant information so that discovery of useful facts can be 
achieved. This connection between compression and knowl- 
edge discovery has been noted by Ramakrishnan and Grama 
~ 4 1 .  

The collection of wavelet queries that we are currently work- 
ing on are shown in figure 4. The figure describes in words 
the semantics of the queries we are interested in. 

The f i s t  query in figure 4 will use the complete model of 
the data to build the best approximate to the original data. 
This, in effect, just uncompresses the data for the user. The 
second query in figure 4 uses the pre-sorted coefficients to 
reconstruct an approximate to the original data with a user 
specified percentage of the available data. The third query 
in figure 4 uses the pre-sorted coefficients to reconstruct an 
approximate to the original data with a specified relative 

1. 

2. 

3 .  

4. 

5 .  

Reconstruct using all the coefficients from the stored 
wavelet decomposition. 

Reconstruct by further choosing the most significant 
wavelet coefficients based on a user supplied percent- 
age. 

Reconstruct by choosing the wavelet coefficients that 
produce an approximate with a user supplied relative 
error. 

Reconstruct using onIy the most significant levels of 
the wavelet decomposition in the model file. 

Reconstruct using coefficients that effect a given spa- 
tial location. 

Figure 4: Queries Relevant to the Wavelet Model 

error (as measure against the original data). The second 
and third queries can be implemented in a progressive fash- 
ion; namely, the coarse scale smooth data can be displayed 
to the user and as the sorted coefficients are added back 
to the approximate data (using the representation formula 
in equation 2) the display of the data can be updated to 
reflect this gained accuracy. This process can also be inter- 
ruptible. The progressive display or interruptibility is an- 
other of our long range research goals for the ad.-hoc query 
system. The fourth query in figure 4 uses the coefficients 
from the most important levels to reconstruct an approxi- 
mate to the original data. The notion of important levels 
is inherent in the representation formula in equation 3.  By 
computing the combined total of the weighted coefficients 
on the different levels of the compressed model a relative 
merit for adding each levels coefficients can be compared 
and used. The fifth query in figure 4 represents a point wise 
reconstruction, again using the representation formula. By 
establishing containment of a given spatial location on each 
of the scaling and wavelet functions a pointwise reconstruc- 
tion of the original data can be performed by using equation 
2”  

3. EXAMPLES 
To illustrate the basic ideas of this research we present two 
examples of how the process works. Our first example is a 
simple univariate time series. Recall that our target data 
is multivariate but the same ideas and algorithms hold in 
the univariate case. Figure 5 shows the values of the Stan- 
dard & Poors 500 for the year 2001 with respect to the 
stock market trading day (a value we are treating as a uni- 
form set of integers). We f is t  perform a wavelet transform 
using a simple Haar orthonormal wavelet. We next create 
the compressed data file, a 50 percent compression ratio is 
established by choosing to store only half of the wavelet co- 
efficients. This results in a compressed approximation with 
0.337% global relative (1’ error); figure 6 shows what that 
compressed time series looks like by simply uncompressing 
it. The three additional figures show what additional recon- 
struction queries on the compressed approximation results 
in. Figure 7 is using about 33% of the original coefficients 
(about 66% of the compressed coefficients) and the resulting 
reconstruction has a global relative error of .590%. Figure 
8 is using about 25% of the original coefficients (about 50% 
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Figure 5: Original dataset. 

of the compressed coefficients) and the resulting reconstruc- 
tion has a global relative error of .739%. Finally, figure 9 
is using about 10% of the original coefficients (about 20% 
of the compressed coefficients) and the resulting reconstruc- 
tion has a global relative error of 1.355%. The results show 
the relationships to original compressed data size, additional 
size "culling" reconstruction queries, and relative error. In 
addition, Figure 10 is a different reconstruction, one that 
uses the 5 best (again measured with 1' norms) levels to re- 
construct the approximation. The resulting reconstruction 
has a global relative error of 1.623%. All of these simple 
univariate time series examples show that it is not diffi- 
cult to achieve good compression with the approximation 
and still retain much of the important characteristics of the 
data, with respect to variation and change. This is in light 
of even further user query requested simplifications in the 
reconstruction. In order to test this procedure on actual 
data we have used simulation data of a can being crushed. 
We again show results using the familiar Haar orthonormal 
wavelet system. This data is time dependent and has about 
13 independent variables per grid point. We show only a 
pressure field from the procedure due to space constraints 
although other other fields show similar behavior. Figures 
11 and 14 show the original uncompressed can at the 1st and 
30th time-steps of the simulation. Figures 13 and 16 show 
the compressed can at  the same time-steps using 66% com- 
pression. Figures 12 and 15 show the compressed can at the 
same time-steps using 50% compression. The results show 
that while simulation data does not have the same simple 
reconstruction behavior of the univariate example above it 
is still possible to reconstruct data values and keep the kind 
of variational character in the results. 

4. COMMENTS AND CONCLUSIONS 
We have described research and development approaches we 
are taking to solve problems of knowledge discovery in large 
scale scientific simulation data. Our research adapts and ex- 
tends ideas of wavelet theory to multivariate data, and for- 
mulates methodologies and algorithms for compressing the 
wavelet coefficients resulting from that work. ?Ve also devise 
ways in which users can effectively query the resulting com- 
pressed data in an intuitive fashion without understanding 

Figure 6: Compressed approximation using 50% of 
the coefficients. 
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Figure 7: Reconstruction using 33% of the coeffi- 
cients. 

Figure 8: Reconstruction using 25% of the coeffi- 
cients. 
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Figure 9: Reconstruction using 10% of the coeffi- 
cients. 
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Figure 10: Reconstruction using the 5 most impor- 
tant levels. 

Figure 11: Time-step 1 from the original can 
dataset. 

Figure 12: Time-step 1 from the 50% compressed 
can dataset. 
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Figure 13: Time-step 1 from the 66% compressed 
can dataset. can dataset. 

Figure 15: Time-step 30 from the 50% compressed 

Figure 14: Time-step 30 from the original can 
dataset. can dataset. 

Figure 16: Time-step 30 from the 66% compressed 



too many of the wavelet specific details. In our initial exper- 
imentation we have found that using wavelets t o  decompose, 
compress, and reconstruct data yields results that are help- 
ful in analyzing the dynamic portions of simulation data. 
The wavelets are attuned, in various degrees, to smoothness 
in data. Compressing by keeping only the largest coefficients 
implies that the reconstruction will be accurate around areas 
where the data  is not smooth - highly dynamic. We intend 
to provide other models that address other inquiries about 
the data, such as range based queries, or perhaps more tra- 
ditional clustering algorithms applied to  the data. We view 
the wavelet queries as providing one of many tools that  will 
allow a scientist or engineer to very quickly ascertain ap- 
proximate characteristics of the data. As mentioned earlier 
this links compression with the data discovery process in a 
very significant way. 
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